
NOTATION 

�9 , time; t, temperature; %, temperature difference; b, heating rate; q, thermal flux; 
Q, heat absorbed; ~, thermal conductivity; a, thermal diffusivity; c, specific heat; p, 
density; ea, thermal activity; h, specimen thickness; r 0, contact spot radius. 
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CERTAIN PROBLEMS OF FLUID FILTRATION IN ELASTIC 

CRACKED-POROUS RESEVOIRS 

V. S. Nustrov UDC 532.546 

This article examines a procedure for realizing an integral method for filtration 
processes in an elastically compressible cracked-porous bed. 

i. Filtration in a cracked-porous medium (a medium with two systems of channels 
differing significantly in permeability) is usually modeled on the basis of the representa- 
tion of two interpenetrating continua which exchange mass. Themodel in [i] is widely used 
in filtration theory and practice. The rsults of the experiments conducted in [2] show, 
however, that permeability is more heavily dependent on the stress state of the system and 
fluid pressure in the cracks than is indicated in the representations in [i]. A more 
complete accounting of the effect of the stress state of the medium on filtration was made 
in [3]. Here, for the model in [3], we examine certain problems dealing with nonsteady 
filtration of a fluid toward a well. 

2. The below equations [3] describe filtration in the elastic material of an iso- 
tropic structure in a state of cubic compression with the stress a (as well as in the case 
of two~dimensional filtration in a material in which all cracks are oriented in the plane of 
motion) 

a at - - - 4  vZ(•a + 1)~ - ~ - . 2 - . 1 '  o/ - e V 2 , 2 - - , 2 + , 1 ,  (1) 
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where 

*~ ---- - -  (p~ - -  pi)(p ~ - -  a)-",  r --= x (nr~) -1 /2 ,  t : (o~ -1, 

a = m] {tn~ (pC _ a)(O ~ + ~m)]_1, ~ = k"2 Ik] = x2/• << I, 

X2____~ ~ 2 [m~ ~~ (~0 + ~m)l -~" (2)  

System (i) is valid only at Pl > O (-i < y ! 0), when the cracks are open. At Pz ! o, 
the cracks are closed, and filtration of the fluid in this zone occurs only through blocks 
(equation of the elastic regime). Contact conditions [4] must be satisfied at the unknown 
boundary between the zones (where Pl = o). 

Below we examine the case of cylindrical symmetry. However, the main conclusions 
reached are also valid for other symmetry variants. The results are represented in Figs. 
1-3 (all of the parameters in the figure are dimensionless). 

3. There are no similarity solutions for system (i). An integral method (see [5-8]) 
can be used to construct approximate solutions. 

The steady-state solution of Eqs. (i) at E + 0 has the form 

( ~  q- 1) ~ : ~ l n r  + ~. ( 3 )  

In accordance with the integral method [7], solution (i), with allowance for [3], is 
sought in the form (the permeability of the blocks is not considered) 

(,~ + 1)~ = ~ in (dl~ ~)) + P~ + wr/6 (t) + . . . .  (4)  

where we have introduced two boundaries s = s (t) between perturbation zones which propa- 
gate along cracks and blocks [9]. For a finite deposit of radius R, the process is broken 
down into three phases. The moment of completion of the first phase is determined by the 

equation 11(tl) = R ,  (5) 

while the end of the second phase is found from the equation 

12 (t2) = R. (6) 

In the first phase (t < tz), the pressures have the form (4) (this is also the solution for 
an infinite region), while in the second phase (t I < t < t2), they have the same form (4) 
but with the substitution g I = R. In the third phase (t ~ t2), they have the form of (4) with 
the substitution i I = s = R. 

The coefficients ~, 6, and y and the laws of motion of the boundaries s = s in 
Eq. (4) are determined from the boundary conditions and integral relations corresponding to 
( i ) :  

St(t) (}~ff) St(t) 
d / r,ldr__~_~_ / r,2dr-- / r* ldr ,  

a - ~ -  o o 

dt o o "o 

(7) 

In (7), for the first phase 6i(t) = s (i = i, 2), X = -q (startup of a well with a 
constant yield q); in the second phase 61(t) = R, 62(t) = s and X = -q for a closed bed 
(depletion regime), while for an open bed (constant pressure maintained at the contour of 
the bed) 

3, : --q -I-- --~ [0 (~bl + l)~larlr= n. 

In the third phase 6i(t) = R (i = i, 2), and the parameter k is determined in the same 
manner as in the second phase. 

The solution of Eqs. (7) must satisfy the following initial conditions: in the first 
phase 
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h (0) = 0, (8 )  

in the second phase* 

in the third phase 

*~1 (tO = *i2 (h), ( 9 )  

,~, (t~) = , ~  G). (10) 

I n  d e t e r m i n i n g  t h e  p r e s s u r e s  ~ i ,  we w i l l  h e n c e f o r t h  r e s t r i c t  o u r s e l v e s  t o  t h e  t e r m s  
w r i t t e n  o u t  i n  Eq.  ( 4 ) .  I n  t h i s  c a s e ,  we h a v e  t h e  f o l l o w i n g  i n  t h e  c a s e  o f  t h e  p r o b l e m  o f  
the startup of a well with a constant yield q for any region (finite or infinite), where the 
permeability of the blocks is ignored 

~it=--?~1=--~2=4q, ~a=~= l+4q. 

For a finite bed ~12 = Bl2(t), ~ia = ~i3(t). Here, in the case of a closed bed 

Y12 = ?i3 = - - 4 q ,  
w h i l e  f o r  an  o p e n  bed  

With allowance for Eq. 
all phases of the process# 

(11) 

where 

(12) 

712 = 1--[la2(t),  ?~a=  1- - [~3( t  ). ( 1 3 )  

(4), integral relations (7) are represented in a single form for 

a Ylt + Y~t -t- - -  - -  = Y~  - -  Y2t, ( 1 4 )  
dt 4 ' dt 

I 

Yit = (4t  - -  0,5) 67, lit = j~ u (4q In u + ~it + ?itu) 1/4du, ( 1 5 )  
0 

while the coefficients ~ and y take the values (11-13), depending on the type of bed. 

For infinite and finite closed beds, the general solution of system (14) has the form: 

YlJ (t) = C1; + C2t exp (st) + "hi (t + 1/b)/(4b), 

Y2t (t) = Clt - -  C2ta exp (st) + ?~; (t - -  a/b)/( 4b), 
(16) 

where s = -b/a, b = i + a. 

For a finite open bed, integration of system (14) poses serious difficulties for the 
second and third phases because the terms Y12 and YIs depend on the unknown functions 612 
and $1s, respectively. I~ this case, we can use the method of successive approximations, 
determining the discontinuities Y12 and YI3 in (14) from the previous step (we take the 
solution for the first phase as the initial approximation). The flow of fluid into the bed 
necessary to maintian constant pressure at r = R is found from system (14). 

4. For the first time (any filtration region) in (16) 

C l 1 = 0 ,  C ~ l = q / b  ~, ( 1 7 )  

with the increase in the size of the perturbation zones being determined frcm the expressions: 

[I1 (q) - -  0,51 l~1 = - - q  It + (1 - -  exp (sO)/b]/b, 

[I1 (q) - -  0,51 l~1 = - - q  It - -  a (1 - -  exp (st))/bl/b, 

(18)  

*We will henceforth use notation of the form fij, where the subscript i = i, 2 determines the 
medium (cracks, blocks) and the subscript j = i, 2, 3 determines the phase of the Frocess. 
#In the case of plane symmetry (tunnel), the integral relations reduce to the form (14). 
The same result can obviously be expected in the case of spherical symmetry as well. 
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Fig. i. 

Ii(~) 
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The r e l a t i o n s  I 1 ( q )  (1 )  and I 2 ( q )  
(2). 

where 
I 

Ii(q) = 111 ( q ) L  I21 (q)i= [ u[1 + 4q(1 -I- l n u - - u ) l l / 4 d u .  (19)  

From estimates of the parameters which determine the dimensionless yield 

q = ~Q [2~hk] (pO _ a)]-l, 

i t  f o l l o w s  t h a t  we n e a r l y  h a v e  0 < q ! 0 . 1 .  The f u n c t i o n  K(q)  = q / ( 0 . 5 - I i ( q ) )  i s  bounded  
and m o n o t o n i c a l l y  d e c r e a s i n g ;  f o r  t h e  a c t u a l  v a l u e s  b e i n g  examined  f o r  q: - 2  < q ! 0 . 1  
(q < 0 - i n j e c t i o n ,  q > 0 - e x t r a c t i o n )  9 .475  ! K(q)  ! 3 . 1 / ( s e e  F i g .  1 ) .  T h u s ?  w i t h  an i n -  
c r e a s e  in  f l u i d  e x t r a c t i o n ,  t h e  m o t i o n  o f  t h e  b o u n d a r i e s  s  = s  i s  s l o w e d .  T h i s  
o c c u r s  b e c a u s e  an i n c r e a s e  in  y i e l d  i s  a c c o m p a n i e d  by  an i n c r e a s e  i n  t h e  r a t e  o f  r e d u c t i o n  
in  bed p r e s s u r e ,  wh ich  in  t u r n  r e s u l t s  i n  g r e a t e r  c o m p r e s s i o n  o f  t h e  c r a c k s  t h a t  a r e  p r e s e n t .  

At s m a l l  v a l u e s  o f  t i m e  l ~ l ~ l ~ t ~ q t / [ b ( O , 5 - - I I ( q ) ) ]  . Then t h e  b o u n d a r y  s o v e r t a k e s  t h e  
boundary s At sufficiently large values of time (infinite bed), a constant distance is 
established between the boundaries of the perturbation zones 

l~1 l 2 - -  21 ~ q[b(0,5 - - l l (q ) ) ]  -1 (20)  

A c c o r d i n g l y ,  w i t h  s m a l l  v a l u e s  o f  t i m e ,  t h e  p r e s s u r e  d i s t r i b u t i o n s  in  t h e  c r a c k s  and 
b l o c k  ( and  t h e  r a t e  o f  p r e s s u r e  r e d u c t i o n )  a r e  f a i r l y  c l o s e .  The d i f f e r e n c e  i n  t h e  r a t e s  o f  
p r e s s u r e  r e d u c t i o n  i n c r e a s e s  w i t h  an i n c r e a s e  i n  t i m e .  

Thus ,  t h e  f i r s t  p h a s e  i n c l u d e s  f l o w  o f  f l u i d  f r o m  t h e  b l o c k s  i n t o  t h e  c r a c k s .  T h i s  f l o w  
i n c r e a s e s  f r o m  z e r o  t o  a maximum v a l u e  c o r r e s p o n d i n g  t o  t h e  c o n s t a n t  d i f f e r e n c e  ( 2 ) .  

I a  t h e  s e c o n d  and t h i r d  p h a s e s  f o r  a c l o s e d  bed ,  t h e  v a l u e s  in  (17 )  and t h e  c o n s t a n t s  
Ci j  i n  (16)  r e m a i n  a s  b e f o r e .  

In the zone s < r < s the initial zero pressure is maintained in the blocks, while 
pressure decreases in the cracks. From a physical viewpoint, this is explained by the 
difference in the rates of propagation of perturbations via the cracks and blocks. The same 
conclusion follows from (21) (see below - a similar conclusion canbe reached on the basis of 
(4)); for fixed r, it follows from the condition s < s that ~2 > ~I- 

5. With the selection of more approximate profiles for the first phase 

(r + l) ~ = I ' +  4q tn (r/l, (t)) (21)  

t h e  i n t e g r a l  I ~ ( q )  in  Eqs .  (18)  and (19)  i s  r e p l a c e d  by  I 2 ( q ) :  

1 
(22)  I~ (q) = .[ u(1 ~- 4qlnu)I/4du.  

o 

In this case, we find the boundary s for the second phase from Eqs. (14) in the case of a 
closed bed (the form of (21) remains the same except for the substitution s = R): 

l~2 (t) = R 2 - -  qcp (t, tl)[0;5 - -  I~ @1 -t, 
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and we find the flow into the bed at r = R needed to maintain a constant contour pressure: 

R [ d  (,~ + 1)a/drlr=e = q [1 - -  r (L tOl, 
4 

where 

(t, tl) = [ I - -  exp (sh)l exp (h - -  t)/b. 

The moment = t I of completion of the first phase is determined by Eqs. (8) and (18). 
Flow into the bed increases with time and approaches q, which is a consequence of ignoring 
the permeability of the blocks. 

The form (21) of the function ~2 remains the same for the second phase in the case of 
a closed bed, while the function ~l must be constructed in the form (4): 

(~1 + 1) ~ -- 4q [tn (r/R) - -  r/R] + ~ (l), (23)  

since use of the initial profile (21) leads to a contradiction in the solution of Eqs. (14). 
In Eqs. (16), for the second phase Y12 = -4q, 

1 

gr,, ( t )=  R z []  u(4q l n u - - 4 q u  + 1312 (t)) 1/4 d u - - 0 , 5 ] ,  
0 

y ~  (t) = [I~ (q) - -  0,5] l~2 (0 .  (24) 

Since we chose basically different profiles of 
the first condition of (9) can be satisfied only at r = R, which is physically valid. 
constants Ci2 for the second phase have the values: 

Cn = (ad~ + e2)/b, C22 = (d~ - -  c~) exp (- .s@/b, 

c~ = - -qa exp (stl)/b ~, d2 = R 2 (I~ (q) - -  0,5) + q/~ + qh/b. 

For t h e  t h i r d  phase ,  t h e  p r e s s u r e s  * i  have  t h e  form (23)  and t h e  unknown f u n c t i o n s  
~ i 3 ( t )  a r e  d e t e r m i n e d  by Eqs. (16) ,  where ~ l s  = -4q  

! 

0 

while the constants Ci3 have the form (25), with the replacement of c2, d 2 by ca, d3, 
respectively: 

41 for the first and second phases, 
The 

(25)  

(26) 

(27) 

= --qa/b z -5 W2/b + R z [11 (q) - -  0,51, ~ = C1. -5 C~2 exp (st2). (28) 

The unknown functions ~ij(t) in integrals (15) (also see (24), (27)) can be determined 
numerically by using the results of tabulation of the integrals (19), (22) (Fig. I). Inte- 
grals of this type were introduced in [i0] to studyggas filtration. It should be noted that 
although li(q) % 0.5 (for q > 0), the order of the terms (Ii(q) - 0.5)s (li(q) - 0.5)R 2 in 

Eqs. (24-28) can have any value. 

6. The time of completion of the phases tl, t 2 depends on the dimensionless complexes 
R, a, q, and ~ and was calculated numerically from Eqs. (5) and (6) for the general case. 

It follows from the numerical calculations (Fig. 2) and a qualitative analysis that the 
values of t I and t 2 increase with an increase in the parameters R, a, and q (their ranges are 
determined on the basis of estimates of the initial characterisics of the system). The 
complexes R and a have the greatest effect: an increase in R by one order of magnitude in- 
creases t i by two orders for most of the values of a and q examined; an increase in a by 
four orders increases t i by four orders for R = 10 -I , i and by two orders for R = i0, 102 , 
103 . The dependence of t i on the yield is weaker: an increase in q from 0.01 to 0.i in- 
creases t i by an average of 30%. The parameter e has a negligible effect on the time of 
completion of the phases. Given sufficiently small values of the complexes R and a, a 
perturbation is propagated considerably more rapidly by the cracks than by the blocks (the 
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Fig. 2. Dependence of the time of comple- 
tion of the phases of the process (t I - 
dashed curves, t 2 - solid curves) on the 
parameter R: a = 10 -2 (i); 1 (2); 102 (3). 

Fig. 3. Dependence of the time of closure 

of cracks on the well (r 0 = i0 -~ - dashed 
curves; r 0 = 10 -2 - solid curves) on the 
yield: a = 10 -2 (i); i (2); 102 (3). 

times t I and t 2 may differ by two orders of magnitude). At large values of R and a, the 
times t i are of the same order. 

The dimensional time of completion of the phases ~i << ~ (or ~T) only for sufficiently 
small values of the parameters R and a. 

7. In regard to the depletion problem, it is of practical interest to evaluate the 
time t = t,, when the fluid pressure on the well drops to the critical value o (~l = -i). 
The cracks close at this pressure. This time can be roughly determined by using Eqs. (21) 
or (4) for ~l. For example, for profile (21), the value t = t, is the root of the equation 

111 ( t , ) =  %exp (1/4q), (29)  

where r0 is the dimensionless radius of the well and s is determined from the first formula 
in (18). Taking the radius of the well equal to 0.i m and taking into account the ranges of 
the parameters Kl and T over which the dimensionless length is determined (see (2)), we 
find r0 % i0-~-102 (it should be noted that r 0 = 10 -4 corresponds to the dimension of the 
bed R = i0 -l - i, r0 = 10 -3 - R = 1 - 10, r0 = 10 -2 - R =10 - 102). 

If we compare Eq. (29) with Eq. (5) for the moment t = t I corresponding to the end of 
the first phase, we find that t, ! t I at values of yield satisfying the condition 

exp (I/4q) < Rlro. (30)  

For  s m a l l  v a l u e s  o f  y i e l d ,  t h e  c r a c k s  on t h e  w e l l  c l o s e  i n  t h e  s e c o n d  o r  t h i r d  p h a s e s ,  and 
t h e r e  i s  a c o r r e s p o n d i n g  change  in  Eq. ( 2 9 ) .  

F i g u r e  3 shows r e s u l t s  o f  c a l c u l a t i o n s  o f  t h e  moment t = t ,  f r om Eq. ( 2 9 ) .  The moment 
o f  c r a c k  c l o s u r e  i s  h e a v i l y  d e p e n d e n t  on t h e  y i e l d :  t h e  t i m e  t = t~  d e c r e a s e s  by s e v e r a l  
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orders of magnitude with an increase in the yield from 0.03 to 0oi~ The part of Fig. 3 
located below the yield axis corresponds to the dimensional time ~, ! ~. 

A qualitative representation of the motion of the front of crack closure r = r,(t) 
can be obtained from Eqo (21): 

f ,( t)  exp (--I/4q)/H (t), t > t,.  
(31) 

It should be emphasized that Eqs. (29-31) give only an approximate picture of the 
process, since the permeability of thr cracks becomes comparable to the permeability of the 
blocks after the cracks close, and the permeability of the blocks was not established here. 
The problem of depletion with allowance for the crack closure front, to be examined later, 
is an analog of the Stefan problem. 

NOTATION 

p, x, ~ and ~, r, t, dimensional and dimensionless pressures, coordinates, and times, 
respectively; Q, q, dimensional and dimensionless yields; k, m, K, permeability, porosity, 
and piezoelectric conductivity; h, capacity of the bed; ~, lag time; Sp, Sm, elastic 
moduli; ~, viscosity of the fluid; ti, time of completion of the phases; t,, time of crack 
closure; V 2, Laplace operator; the symbol f~ denotes characteristics of the system in the 
presence of initial pressure p~ The indices 1 and 2 pertain to the cracks and blocks, 
respectively. 
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